

Biophysical Chemistry 115 (2005) 99-104

Biophysical Chemistry

http://www.elsevier.com/locate/biophyschem

Phase transition in vector spin glasses

A.P. Young*

Department of Physics, University of California, Santa Cruz, CA 95064, United States

Received 3 June 2004; received in revised form 28 October 2004; accepted 10 December 2004 Available online 6 January 2005

Abstract

We first give an experimental and theoretical introduction to spin glasses, and then discuss the nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. A finite size scaling analysis of the correlation length of the spins and chiralities shows that there is a single, finite-temperature transition at which both spins and chiralities order.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Spin glass

1. Introduction

A spin glass is a system with disorder and frustration. Fig. 1 shows a toy example of frustration with a single square of Ising spins (which can only point up or down). The "+" or "-" on the bonds indicates a ferromagnetic or antiferromagnetic interaction, respectively. In this example, with one negative bond, it is impossible to minimize the energy of all the bonds so there is competition or "frustration".

Most theoretical work uses the Edwards-Anderson [1] (EA) model,

$$\mathcal{H} = -\sum_{\langle i,j\rangle} J_{ij} \mathbf{S}_i \mathbf{S}_j, \tag{1}$$

in which the spins S_i lie on the sites of a regular lattice, and the interactions J_{ij} , which we take to be between nearest neighbors only, are independent random variables with mean and standard deviation given by

$$[J_{ij}]_{av} = 0; \quad [J_{ii}^2]_{av}^{1/2} = J(=1).$$
 (2)

A zero mean is chosen to avoid any bias towards ferromagnetism or antiferromagnetism, and we will follow common practice and take a Gaussian distribution for the J_{ij} . The S_i are of unit length and have m-components:

$$m = 1(\text{Ising})$$

 $m = 2(XY)$ (3)
 $m = 3(\text{Heisenberg}).$

The Edwards Anderson model is the simplest one which includes the necessary ingredients of randomness and frustration.

Different types of experimental systems have these ingredients:

 Metals: diluted magnetic atoms, e.g., Mn, in a nonmagnetic metal such as Cu, interact with the RKKY interaction,

$$J_{ij} \sim \frac{\cos(2\mathbf{k}_{\mathrm{F}}R_{ij})}{R_{ii}^3},\tag{4}$$

where k_F is the Fermi wavevector. We see that J_{ij} is random in magnitude and sign, so there is frustration. Note that Mn is an S-state ion and so has little anisotropy. It should therefore correspond to a *Heisenberg* spin glass.

Insulators: an example is Fe_{0.5}Mn_{0.5}TiO₃, which comprises hexagonal layers. The spins align perpendicular to layers (hence it is *Ising*-like). Within a layer the spins in

^{*} Tel.: +1 831 4594151; fax: +1 831 4593043. *E-mail address*: peter@bartok.ucsc.edu.

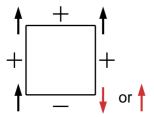


Fig. 1. A Toy model which shows frustration. If the interaction on the bond is a "+", the spins want to be parallel and if it is a "-" they want to be antiparallel. Clearly all these conditions cannot be met so there is competition or "frustration".

pure FeTiO₃ are ferromagnetically coupled while spins in pure MnTiO₃ are antiferromagnetically coupled. Hence the mixture gives an *Ising spin glass with short range interactions*.

- Other systems where spin glass ideas have proved useful are:
 - Protein folding (a major theme of this conference)
 - Optimization problems in computer science
 - Polymer glasses, foams . . .

An important feature of spin glasses is that they undergo a sharp thermodynamic phase transition at temperature $T=T_{\rm SG}$, such that for $T < T_{\rm SG}$ the spin freeze in some random-looking orientation. As $T \rightarrow T_{\rm SG}^+$, the spin glass correlation length $\xi_{\rm SG}$, which we will discuss in detail below, diverges. Here we just note that the defining feature of the correlation length is that the correlation function $\langle S_i S_j \rangle$ becomes significant for $R_{ij} < \xi_{\rm SG}$, though the *sign* is random. A quantity which diverges, therefore, is the *spin glass susceptibility*

$$\chi_{\text{SG}} = \frac{1}{N} \sum_{\langle i,j \rangle} \left[\langle \mathbf{S}_i \mathbf{S}_j \rangle^2 \right]_{\text{av}},\tag{5}$$

(notice the square) which is accessible in simulations. It is also essentially the same as the *non-linear susceptibility*, χ_{nl} , which can be measured experimentally and is defined by the coefficient of h_3 in the expansion of the magnetization m,

$$m = \chi h - \chi_{nl} h^3 + \dots, \tag{6}$$

where h is the magnetic field. We expect that $\chi_{\rm nl}$ diverges at $T_{\rm SG}$ like

$$\chi_{nl} \sim (T - T_{SG})^{-\gamma} \tag{7}$$

where γ is a critical exponent.

This divergent behavior has been seen in many experiments. Fig. 2 shows the results of Omari et al. [2] on 1% Mn in Cu. They define $m=a_1h-a_3c_3h^3+a_5c^5h_5$ and choose units (and constants $c_3=1/15$; $c_5=2/305$) such that $a_i=1$ for independent Mn spins. It follows that a_3 is χ_{nl} in dimensionless units. We see that χ_{nl} becomes very large, (>10³); and presumably diverges. A fit gives $\gamma=3:25$.

An important feature of spin glasses at low temperature is that the dynamics becomes very slow, and below $T_{\rm SG}$ the

system is never fully in equilibrium. This is because the "energy landscape" becomes very complicated with many "valleys" separated by "barriers". The (free) energies of the valleys can be very similar and yet the spin configurations rather different. Hence there are large-scale, low-energy excitations in spin glasses.

This non-equilibrium behavior has been extensively studied in recent years. Of particular note has been the study of "aging" in spin glasses, pioneered by the Uppsala group [3]. One cools the system below $T_{\rm SG}$ and waits for a "waiting time" $t_{\rm w}$. The system is then perturbed in some way, e.g., by applying a magnetic field, and the subsequent response is measured. It is found that the nature of the response depends on $t_{\rm w}$, providing clear evidence that the system was not in equilibrium.

More complicated temperature protocols are possible, which have led to surprising results. For example, one can cool smoothly below $T_{\rm SG}$ and wait at a temperature T_1 , say, before cooling further, and then warming back up through $T_{\rm SG}$ this time without waiting at T_1 . While waiting at T_1 during the cooling process, the data show a drift with time, and on warming, one finds a similar feature at T_1 even though the system did not wait there. This "memory" effect [4] is still not well understood, and neither is "rejuvenation", the fact that aging at one temperature does not help equilibration at a lower temperature [4].

On the theoretical side, there is a mean field solution due to Parisi [5,6] which following Sherrington and Kirkpatrick

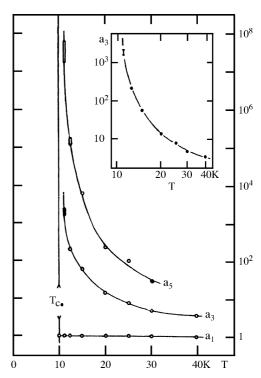


Fig. 2. Results for the non-linear susceptibility of 1% Mn in Cu from Omari et al. [2]. The quantity a_3 is the non-linear susceptibility in dimensionless units.

[7], is the exact solution of an EA-like model with infinite range interactions. One finds a finite spin glass transition temperature $T_{\rm SG}$.

Most of what we know about short range short-range (EA) models in three dimensions has come from simulations on Ising systems, which also indicate a finite $T_{\rm SG}$, as we will see below. However, less is known about vector spin glass models and these will be the main focus of the rest of the talk.

While the existence of a phase transition in three-dimensions is not in serious dispute, the nature of the equilibrium state below $T_{\rm SG}$ has been much more controversial. While an experimental system is not in equilibrium below $T_{\rm SG}$, to develop a theory for the non-equilibrium behavior we presumably need to know the equilibrium state towards which it is trying to get to but never reaches. There are two main scenarios:

- "Replica Symmetry Breaking (RSB), which is like the Parisi [5,6] mean field solution, and
- The "droplet picture" (DP) of Fisher and Huse [8,9].

These differ in the nature of the large-scale, low-energy excitations, whose energy ΔE scales as

$$\Delta E \propto \ell^{\theta},$$
 (8)

where ℓ is the linear size of the excitation and θ is a "stiffness" exponent. RSB and DP have different predictions for θ :

- RSB, θ =0 for some excitations.
- DP, θ >0 (but small, around 0:2 for 3d Ising).

Hence, a lot of cancellation occurs in the calculation of the energy to flip a cluster of spins. A characteristic feature of spin glasses, then, is the presence of excitations which involve a large number of spins but which cost very little energy.

There are two main sets of issues in spin glasses:

- The nature of the phase transition.
- The nature of the spin glass phase below $T_{\rm SG}$.

For both problems, most theory has been on Ising systems though the vector nature of the spins may be relevant. In the rest of this talk I will discuss the nature of the phase transition in *vector* spin glass models.

2. Vector spin glasses

Most theory has been done for the Ising (S_i =±1) spin glass, where there is clear evidence for a finite T_{SG} . The best evidence is from finite size scaling (FSS) of correlation length by Ballesteros et al. [10]. This technique is discussed further below. However, many experimental systems, such as CuMn

described above, are closer to an isotropic vector spin glass (S_i is a vector), where the theoretical situation is less clear.

Old Monte Carlo simulations [11] found that $T_{\rm SG}$, if it occurs at all, must be very low, and this was interpreted as being evidence for $T_{\rm SG}$ =0. Motivated by this, Kawamura [12–15] argued that $T_{\rm SG}$ =0 but there can be a glass-like transition at T= $T_{\rm CG}$ in the "chiralities" (i.e., vortices). This implies spin-chirality decoupling. However, the possibility of finite $T_{\rm SG}$ has been raised by various authors, e.g., Maucourt and Grempel [16], Akino and Kosterlitz [17], Granato [18], Matsubara et al. [19,20], and Nakamura et al. [21].

The situation seemed confusing and so we decided to try to clarify it by a FSS analysis of the correlation lengths of both the spins and chiralities for the XY and Heisenberg spin glasses. We expected this to be useful because:

- It was the most successful approach for the Ising spin glass [10].
- It probes directly divergent quantities.
- If spin-chirality decoupling occurs then eventually the spin glass correlation length must exceed the chiral glass correlation length. Can we see this?

Next we discuss how to define chirality in spin glasses. In unfrustrated systems the ground state is collinear and so chirality needs to be thermally excited. Such thermally activated chiralities (vortices) are responsible for the Kosterlitz–Thouless–Berezinskii transition in the 2d XY ferromagnet. However, in spin glasses, an important difference is that chiralities are quenched in at low-T because the ground state is non-collinear as a result of the disorder and frustration. Following Kawamura [13,14] we define chirality by:

$$\kappa_{i}^{\mu} = \begin{cases}
\frac{1}{2\sqrt{2}} \sum_{\langle l,m \rangle}^{'} \operatorname{sgn}(J_{lm}) \sin(\theta_{l} - \theta_{m}), XY(\mu \perp \text{square}), \\
S_{i+\hat{\mu}} S_{i} \times S_{i-\hat{\mu}}, & \text{Heisenberg},
\end{cases}$$
(9)

see Fig. 3.

Next we discuss the various quantities that will be calculated in the simulations. To determine the correlation lengths of the spins and chiralities we need to Fourier transform the appropriate correlation functions:

$$\begin{split} \chi_{\text{SG}}(\mathbfit{k}) &= \frac{1}{N} \sum_{i,j} \left[\langle \mathbfit{S}_i \mathbfit{S}_j \rangle^2 \right]_{\text{av}} e^{i\mathbfit{k}(R_i - R_j)}, \quad \text{(spins)}, \\ \chi_{\text{CG}}^{\mu}(\mathbfit{k}) &= \frac{1}{N} \sum_{i,j} \left[\langle \kappa_i^{\mu} \kappa_j^{\mu} \rangle^2 \right]_{\text{av}} e^{i\mathbfit{k}(R_i - R_j)}, \quad \text{(chiralities)}. \end{split} \tag{10}$$

Note that $\chi_{nl} \sim \chi_{SG}(k=0)$, which is essentially the "correlation volume" of the spins.

We determine the spin glass correlation length of the finite-size system, ξ_L , from the Ornstein Zernicke equation:

$$\chi_{SG}(\mathbf{k}) = \frac{\chi_{SG}(0)}{1 + \xi_I^2 \mathbf{k}^2 + \dots},\tag{11}$$

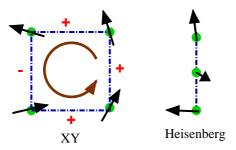


Fig. 3. An illustration of chirality for XY and Heisenberg spin glasses.

by fitting to k=0 and $k=k_{\min}=2\pi/L$ (1, 0, 0). The precise formula is

$$\xi_{\rm L} = \frac{1}{2\sin(\mathbf{k}_{\rm min}/2)} \left(\frac{\chi_{\rm SG}(0)}{\chi_{\rm SG}(\mathbf{k}_{\rm min})} - 1\right)^{1/2} \tag{12}$$

The chiral glass correlation length of the system, $\xi_{c,L}^{\mu}$, is determined in an analogous way. The results for the correlation lengths will be analyzed according to finite-size scaling (FSS). The basic assumption of FSS is that the size dependence comes from the ratio $L/\xi_{\rm bulk}$ where

$$\xi_{\text{bulk}} \sim (T - T_{\text{SG}})^{-\nu} \tag{13}$$

is the bulk correlation length. In particular, the finite-size correlation length is expected to vary as

$$\frac{\xi_L}{L} = X \left(L^{1/\nu} (T - T_{SG}) \right), \tag{14}$$

since ξ_L/L is dimensionless (and so has no power of L multiplying the scaling function X). Hence data for ξ_L/L for different sizes should intersect at $T_{\rm SG}$ and splay out below $T_{\rm SG}$. Similarly, data for $\xi_{c;L}$ should intersect at $T_{\rm CG}$.

3. Results

Let's first see how FSS scaling of the correlation length works for the Ising SG. The data in Fig. 4 shows clear intersections, and hence evidence for a transition, at $T_{\rm SG} = 1.00$, and the data splay out again on the low-T side demonstrating that there is spin glass order below $T_{\rm SG}$. This is data for the Gaussian distribution. The technique of determining $T_{\rm SG}$ by FSS of ξ_L was first used by Ballesteros et al. [10] who took the " $\pm J$ " distribution in which $J_{ij} = \pm 1$ with equal probability. This has a somewhat higher transition temperature, $T_{\rm SG} = 1.14$.

Prior to the work of Ballesteros et al., determination of $T_{\rm SG}$ generally used the "Binder ratio", a dimensionless ratio of the moments of the order parameter distribution which has a finite size scaling of the same form as in Eq. (14). However, this gives much less convincing demonstration of

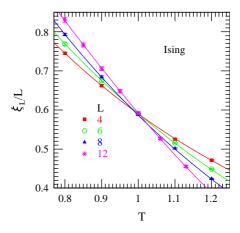


Fig. 4. Data for the correlation length of the Ising spin glass showing clear evidence for a transition at $T_{\rm SG}$ 1:00.

a transition, see Fig. 5 which shows data from Marinari et al. [22] for the Gaussian distribution.

We have seen that the best method for studying the transition in the Ising spin glass is FSS of the correlation length. We now apply this to the spin glass with vector spins. Similar results were obtained [23] for both the XY and Heisenberg models. Here, for conciseness, we just present results for the Heisenberg case.

Fig. 6 shows data for ξ_L/L . While the intersections are not quite as clean as those for the Ising model, the data does intersect and splay out again at low temperatures indicating a finite-temperature spin glass transition. The inset shows that the data can be collapsed reasonably according the FSS form in Eq. (14) with $T_{\rm SG} = 0.16$; v = 1.1.

Fig. 7 shows data for the chiral correlation length. There are actually two such lengths depending upon whether the wavevector k_{\min} in Eq. (12) is parallel or perpendicular to

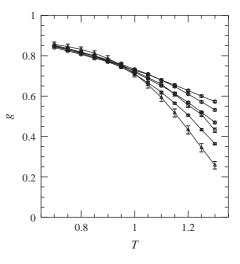


Fig. 5. Data for the Binder ratio length of the Ising spin glass with Gaussian interactions, from Marinari et al. [22]. The data merge but do not clearly splay out on the low-T side, unlike the results for the correlation length shown in Fig. 4.

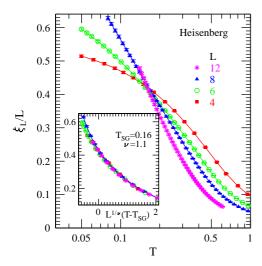


Fig. 6. Data for the spin glass correlation length of the Heisenberg spin glass (from Ref. [23]).

the direction in which the sites of the three spins are aligned. The main figure shows the parallel correlation length and the inset the perpendicular correlation length. Apart from the smallest size, the data intersect pretty well. Furthermore, the transition temperature $T_{\rm CG}$ seems to be about 0.14, close to $T_{\rm SG}$, and equal to it within errors.

We conclude that a direct study of the correlation lengths indicates that there is a single phase transition at which both spins and chiralities order in vector spin glasses.

4. Conclusions

We have argued that there is a finite temperature spin glass transition in vector spin glasses, even in the absence of anisotropy. By contrast Kawamura argues that there is no spin glass transition for an isotropic vector spin glass.

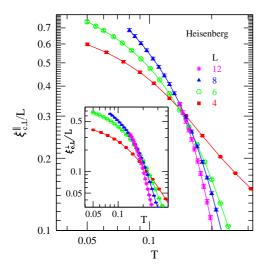


Fig. 7. Data for the chiral glass correlation length of the Heisenberg spin glass (from Ref. [23]).

However, in Kawamura's spin-chirality decoupling picture, any anisotropy will couple spins and chiralities leading to a spin glass transition (driven by the chiralities) at the chiral glass temperature. It is interesting, therefore, to ask what are the experimental differences between the two scenarios.

Let us denote the strength of the anisotropy by Δ , such that for Δ =0 the model is isotropic (i.e., Heisenberg-like), while for Δ ≠0 the model is anisotropic and the critical behavior is presumably Ising-like. One can change Δ by adding heavy impurities and see how the non-linear susceptibility diverges as a function of Δ :

$$\chi_{nl} = A(\Delta)(T - T_{SG}(\Delta))^{-\gamma}.$$
 (15)

In Kawamura's picture, $T_{\rm SG}=T_{\rm CG}$, the chiral glass transition temperature, which is always finite except that for Δ exactly zero the spin glass transition disappears. Presumably the way this happens is that the amplitude $A(\Delta)$ vanishes for $\Delta \rightarrow 0$. Hence the different predictions are:

- This work: for $\Delta \rightarrow 0$; $A(\Delta) \rightarrow \text{const.}$; $T_{SG} \rightarrow \text{const.}$
- Kawamura: for $\Delta \rightarrow 0$; $A(\Delta) \rightarrow 0$; $T_{SG} \rightarrow const.$

Data on CuMn and AgMn alloys were obtained by Fert et al. [24], based on work by Vier and Schultz [25]. The data, shown in Fig. 8, are consistent with $T_{\rm SG}$ finite for $\Delta \rightarrow 0$ (or possibly $T_{\rm SG} \rightarrow 0$ logarithmically). However, the difference between our predictions and Kawamura's is not in $T_{\rm SG}$ itself, which is finite even in Kawamura's scenario

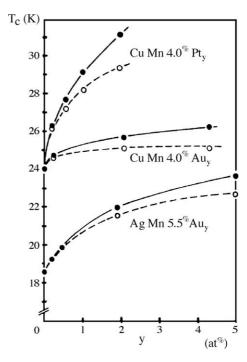


Fig. 8. Data from Ref. [24] for the spin glass transition temperature of some spin glass alloys as a function of the concentration y of added heavy impurities. Using a theoretical model, the value of y is converted to a value of anisotropy parameter Δ which is then used in the analysis. The solid dots have been corrected for the reduction in $T_{\rm SG}$ due to the reduction in mean free path of the conduction electrons caused by the heavy impurities.

for any non-zero Δ , but is rather in the amplitude $A(\Delta)$, which we predict to be finite for $\Delta \rightarrow 0$ while Kawamura predicts that it vanishes. Unfortunately, the experiments did not appear to analyze the amplitude.

To conclude, spin glasses continue to present serious challenges. In this talk, I have presented results which, in my view, resolve one of the controversies, whether there is a finite temperature spin glass transition in a vector spin glass without anisotropy. The answer appears to be "yes". However, the nature of the putative equilibrium state below $T_{\rm SG}$, towards which the system evolves but never reaches, as well as non-equilibrium phenomena such as aging and rejuvenation, remain to be fully understood.

This work was done in collaboration with Lik Wee Lee and I would I like to thank him for many valuable discussions. I acknowledge support from the National Science Foundation under grant DMR 0337049.

References

- [1] S.F. Edwards, P.W. Anderson, J. Phys. F. Met. Phys. 5 (1975) 965.
- [2] R. Omari, J.J. Prejean, J. Souletie, J. Phys. 44 (1983) 1069.
- [3] P. Nordblad, P. Svendlidh, in: A.P. Young (Ed.), Spin Glasses and Random Fields, World Scientific, Singapore, 1998.
- [4] K. Jonason, E. Vincent, J. Hammann, J. Bouchaud, P. Nordblad, Phys. Rev. Lett. 81 (1998) 3243 (cond-mat/9806134).

- [5] G. Parisi, J. Phys. A 13 (1980) 1101.
- [6] G. Parisi, Phys. Rev. Lett. 50 (1983) 1946.
- [7] D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35 (1975) 1972.
- [8] D.S. Fisher, D.A. Huse, Phys. Rev. Lett. 56 (1986) 1601.
- [9] D.S. Fisher, D.A. Huse, Phys. Rev., B 38 (1988) 386.
- [10] H.G. Ballesteros, A. Cruz, L.A. Fernandez, V. Martin-Mayor, J. Pech, J.J. Ruiz-Lorenzo, A. Tarancon, P. Tellez, C.L. Ullod, C. Ungil, Phys. Rev., B 62 (2000) 14237 (cond-mat/0006211).
- [11] S. Jain, A.P. Young, J. Phys. C 19 (1986) 3913.
- [12] H. Kawamura, M. Tanemura, Phys. Rev., B 36 (1987) 7177.
- [13] H. Kawamura, M.S. Li, Phys. Rev. Lett. 87 (2001) 187204 (cond-mat/ 0106551).
- [14] H. Kawamura, Phys. Rev. Lett. 80 (1998) 5421.
- [15] K. Hukushima, H. Kawamura, Phys. Rev., E 61 (2000) R1008.
- [16] J. Maucourt, D.R. Grempel, Phys. Rev. Lett. 80 (1998) 770.
- [17] N. Akino, J.M. Kosterlitz, Phys. Rev., B 66 (2002) 054536 (cond-mat/ 0203299).
- [18] E. Granato, J. Magn. Magn. Mater. 226 (2000) 366 (cond-mat/ 0107308).
- [19] F. Matsubara, T. Shirakura, S. Endoh, Phys. Rev., B 64 (2001) 092412.
- [20] S. Endoh, F. Matsubara, T. Shirakura, J. Phys. Soc. Jpn. 70 (2001) 1543.
- [21] T. Nakamura, S. Endoh, J. Phys. Soc. Jpn. 71 (2002) 2113 (cond-mat/ 0110017).
- [22] E. Marinari, G. Parisi, J.J. Ruiz-Lorenzo, Phys. Rev., B 58 (1998) 14852.
- [23] L.W. Lee, A.P. Young, Phys. Rev. Lett. 90 (2003) 227203 (cond-mat/ 0302371).
- [24] A. Fert, N. de Courtenay, N. Bouchiat, J. Phys. 49 (1988) 1173.
- [25] D.C. Vier, S. Schultz, Phys. Rev. Lett. 54 (1985) 150.